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We show how the directed-loop Monte Carlo algorithm can be applied to study vertex models. The algo-
rithm is employed to calculate the arrow polarization in the six-vertex model with the domain wall boundary
conditions. The model exhibits spatially separated ordered and “disordered” regions. We show how the bound-
ary between these regions depends on parameters of the model. We give some predictions on the behavior of
the polarization in the thermodynamic limit and discuss the relation to the Arctic Circle theorem.
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I. INTRODUCTION

Vertex models have a long and distinguished history in
physics. Their fame is intimately connected to the concept of
integrability, and the exact solutions of the six-vertex[1] and
the eight-vertex[2] models with periodic boundary condi-
tions (PBC) are indeed milestones in physics. Despite being
exactly solvable, there are questions about these models that
cannot easily be answered. An example is the influence of
boundary conditions on correlation functions. While bound-
ary conditions are not normally important in the thermody-
namic limit, they have a profound influence on the vertex
models. Exact studies, made for the six-vertex model with
the domain wall boundary conditions(DWBC) [3] show this
in particular. These studies were restricted to certain points in
the phase diagram, and involve rather sophisticated math-
ematical methods. It is thus appropriate to complement them
with Monte Carlo simulations.

The purpose of this paper is to demonstrate that the
directed-loop Monte Carlo algorithm developed for quantum
spin systems[4] can be used as an effective tool to study
vertex models. The discussion of the algorithm will be kept
general, but when demonstrating its use we will focus on the
six-vertex model with the DWBC, a model which is difficult
to simulate using other known Monte Carlo algorithms.

II. MONTE CARLO ALGORITHM

In a vertex model, each vertex has edges with an Ising-
like variable, an arrow, that points either away from or into
the vertex. The arrangement of arrows around the vertex de-
termines the vertex weight. Two vertices are joined by their
common edge, sharing the arrow on the edge. The Monte
Carlo algorithm discussed here always flips two(or zero)
arrows on a vertex, thus it is limited to models where an even
number of arrows are pointing away from each vertex. Most
vertex models of interest obey this rule.

In visualizing the directed-loop Monte Carlo algorithm,
originally developed for quantum systems[4], it is helpful to

cut every edge into two pieces, each piece having an arrow
belonging to a specific vertex, see Fig. 1. For a valid vertex
configuration the arrows on the two parts of an edge must
have the same orientation. The directed-loop algorithm is as
follows: Pick a random vertexv1 and a random edge belong-
ing to that vertex. Based on these choices select in a proba-
bilistic manner another edge belonging tov1 and name that
the out-edge. Flip the arrows on both the part of the in-edge
and the part of the out-edge belonging tov1. This introduces
two discontinuities in the arrow configurations on the edges,
one on the starting in-edge and another on the out-edge. The
new configuration is thus not an allowed vertex configura-
tion. To repair this, the out-edge discontinuity is moved by
repeating the procedure on the vertex connected to the out-
edgev2, this time using the out-edge ofv1 and the in-edge of
v2. The process is stopped when the out-edge selected is the
starting edge, thus healing all discontinuities. In this way
arrows are flipped as a loop is constructed, and a new al-
lowed vertex configuration is arrived at when the loop
closes.

In order to determine the probabilities for selecting out-
edges and to see how detailed balance is satisfied one needs
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FIG. 1. Illustration of the directed-loop algorithm. Vertex edges
are drawn with two arrows allowing the discontinuity at the head
and tail of the loop to be shown. The thick line shows the loop path
along which the arrows has been flipped. The loop closes when the
loop head(thick arrow) hits the loop tail(vertical bar).
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to consider also the probability for the reverse update. The
reverse update consists of traversing the same loop in the
opposite direction while flipping arrows back. As is ex-
plained in detail in Ref.[4], detailed balance is satisfied for
the whole loop construction, if detailed balance is satisfied in
each edge selecting step, for which the criterion is as fol-
lows: Let w be the weight of the vertexv before edge-flips,
then the probabilityPsv , i →od for exiting at the out-edgeo,
given that the in-edge isi, should satisfy

wPsv,i → od = w8Psv8,o → id, s1d

wherew8 is the weight of the vertexv8 obtained by flipping
the arrows on edgesi ando belonging to the vertexv. Notice
that Psv8 ,o→ id, on the right-hand side, describes an edge-
selecting step in the reverse update process where the loop is
traversed in the opposite direction to that described on the
left-hand side. The loop construction should not terminate in
the edge-selecting step, thus

o
o

Psv,i → od = 1, s2d

where the sum is taken over all possible out-edges, including
the in-edgei.

This algorithm resembles closely the ice model algorithm
invented by Rahman and Stillinger[5], generalized to arbi-
trary couplings by Barkema and Newman[6]. In fact, at the
point in parameter space where all vertex weights are equal
our algorithm is identical to the long-loop version of the ice
model algorithm. However, away from this point, Barkema
and Newman’s algorithm involves accepting or rejecting the

loop after it has been constructed. The directed-loop algo-
rithm has no such accept/reject step. A comparison of inte-
grated autocorrelation times for the directed-loop algorithm
and the short-loop algorithm of Barkema and Newman are
shown in Fig. 2. The autocorrelation times are measured in
units of lattice sweeps. One lattice sweep corresponds to a
number of elementary loop moves such that on average each
vertex on the lattice have been visited twice. In defining
visited we include parts of the loop where the loop bounces
off a vertex(relevant for the directed-loop algorithm) and the
neck part of short loops. Neither the bounces nor the short-
loop-necks contribute to changes in the vertex configuration.
However, they are intrinsic parts of the algorithms and re-
quires computer effort, and should therefore be accounted
for.

The upper panel of Fig. 2 shows integrated autocorrela-
tion times of the observable counting the number ofc-type
vertices in each configuration. While the integrated autocor-
relation times are larger for the short-loop algorithm the scal-
ing with system size appears to be equal for both algorithms.
The lower panel shows integrated autocorrelation times for
the total arrow polarization in they direction. These autocor-
relation times scale much worse for the short-loop algorithm
than for the directed-loop algorithm. This is to be expected
from the fact that most loops accepted in the short-loop al-
gorithm are small, while large loops that wind around the
boundary of the lattice is needed to change the total polar-
ization. These are not suppressed in the directed-loop algo-
rithm, thus leading to better performance.

Equations(1) and (2) form several coupled sets which in
most cases are underdetermined. There are thus many solu-
tions for the out-edge selection probabilitiesP. Some general
solutions and analysis of their efficiency for different quan-
tum systems were reported in Ref.[7]. Here we employ the
solution B in Ref.[7] to the eight-vertex model, but solutions
for higher-vertex models are not hard to find as well. The
allowed vertices for the eight-vertex model and their statis-
tical weights are shown in Fig. 3. To shorten notation, we
consider the so-called symmetric case: the statistical weights,
a, b, c, andd, of the allowed states are assumed to be invari-
ant under the simultaneous reversal of all arrows. The gen-
eralization of the algorithm to the nonsymmetric case can be
performed easily.

Let W1, . . . ,W4 be the vertex weightsa, b, c, d of the
eight-vertex model ordered so thatW1ùW2ùW3ùW4. Then
the probability for picking the out-edge on a vertex with
weight Wi resulting in a new vertex weightWj after flipping
arrows istij /Wi wheretij = tji and the nonzero entries of the
434 matrix t are

FIG. 2. Integrated autocorrelation times for number ofc-type
vertices(upper panel) and the total polarization in they-direction
(lower panel) for the directed-loop algorithm(open symbols) and
the short-loop Barkema-Newman algorithm(closed symbols). The
data shown are for the symmetric six-vertex model on anN3N
square lattice with PBC and vertex weightsa=b=2 andc=1.

FIG. 3. The vertices of the eight-vertex model and their statis-
tical weights.
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t12 = sW1 + W2 − W3 − W4d/2,

t13 = sW1 − W2 + W3 − W4d/2, s3d

t23 = s− W1 + W2 + W3 + W4d/2,

t14 = W4,

whenW1−W2−W3−W4ø0. Otherwise one needs to include
bounces in which the out-edge coincides with the in-edge. In
this case a solution can be chosen as follows:

t11 = W1 − W2 − W3 − W4,

t1j = tj1 = Wj , j = 2,3,4, s4d

tij = 0, otherwise.

The directed-loop algorithm satisfies ergodicity as any
configuration can be obtained from another configuration by
flipping spins along a finite number of(possibly overlapping)
loops. This process is exactly the directed-loop update, thus
ergodicity follows.

The algorithm presented here has many similar features to
the loop algorithm[8]. The loop algorithm breakup rules for
the symmetric eight-vertex model can be chosen identical to
Eq. (3), as can be seen from Ref.[9], whenever the weights
are such that no bounces are needed in the directed-loop
algorithm. However, in parameter regimes where bounces
are needed, the related feature in the loop algorithm is to
“freeze” independent loops together. Bounces and “freezing”
of loops are very different in how they act to change the
configuration. While the bounce process is a local resistance
to changing a vertex, “freezing” causes big nonlocal changes
of the vertex configuration. There are also other differences:
For general vertex models the set of nonfreezing/bouncefree
solutions is always smaller for the loop algorithm than for
the directed-loop algorithm. This allows the directed-loop
algorithm to be efficient in a larger region of parameter space
than the loop algorithm. In particular this applies to the
asymmetric eight-vertex model.

Note that the need for bounces is generally not so crucial
for higher-vertex models with many weights of the same
magnitude, thus we expect that the directed-loop algorithm
should work well in simulating these. Note also that an al-
gorithm based on the directed-loop idea was recently dem-
onstrated to be effective in simulating classical integer-
valued link-current models[10].

III. SIX-VERTEX MODEL WITH THE DWBC

The six-vertex model with the DWBC was introduced in
Ref. [11] in connection with the calculation of the correlation
functions for exactly solvable 1+1 dimensional models[3].
Here we recall the definition of the model in brief, referring
for further details to the Ref.[12] where a more detailed

description of the model and a comprehensive list of refer-
ences are given.

The model is defined on anN3N square lattice; the ther-
modynamic limit corresponds toN→`. There are six pos-
sible states at each vertex: one should setd=0 in the eight-
vertex model as defined in Fig. 3. The model is symmetric:
The statistical weights,a, b, andc, of the allowed states are
assumed to be invariant under the simultaneous reversal of
all arrows. Hence, the model is characterized by only two
parameters, which can be taken to bea/c and b/c. We set
c=1.

The DWBC imply that all arrows on the top and bottom
of the lattice are pointing inward, while all arrows on the left
and right boundaries are pointing outward, as shown in Fig.
4.

To investigate the spatially inhomogeneous behavior of
this model we focus on the polarization,xNsx,yd [12,13],
which is the ensemble average of the arrow direction on the
edge with coordinatessx,yd on theN3N lattice. The coor-
dinate system used is shown in Fig. 4. Due to the symmetry
of the model it is sufficient to consider the polarization of the
horizontal arrows only. The value +1s−1d is assigned to an
arrow pointing to the right(left) and the ensemble average is
normalized by dividing by the partition function. Therefore,
xN lies between −1 and 1.

Obviously, xN is independent of the coordinates of the
edge in case of PBC. For these boundary conditionsxN is
known in the thermodynamic limit, and exhibits ferroelectric

FIG. 4. The domain wall boundary conditions. Shown is an
N3N lattice. The total number of vertices isN2. Thex andy coor-
dinates take integer values at the midpoints of the horizontal edges.

FIG. 5. The diagram of the six-vertex model in terms of the
weightsa andb. One hasD.1 in the regions I and II, −1,D,1
in the region III, andD,−1 in region IV. The dotted quarter circle
corresponds toD=0.
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order, antiferroelectric(AF) order or no order, depending on
the position on thesa,bd plane. Thus, three phases exist in
the six-vertex model with PBC: ferroelectric, antiferroelec-
tric, and disordered phase. In Fig. 5 the phase diagram on the
sa,bd plane for the model with PBC is plotted(cf., Fig. 8.5
of Ref. [2]).

Introduce a parameterD by the formula

D =
a2 + b2 − 1

2ab
. s5d

The caseD.1 (regions I and II in Fig. 5) corresponds to the
ferroelectric phase; the case −1,D,1 (region III in Fig. 5)
to the disordered phase; the caseD,−1 (region IV in Fig. 5)
to the AF phase.

Figure 5 may be considered as the phase diagram for the
model with the DWBC, in the sense that the free energy
takes a different analytic form in regions I through IV(see
Ref. [14] for details). But, in the case of DWBC the polar-
izationxN depends on the position of the edge. In Sec. IV we
show numerical results for the polarizationxNsx,yd of the
horizontal arrows as the parametersa andb are varied.

Making use of the directed-loop algorithm described in
the previous section for simulation of the model with the
DWBC one should treat vertices belonging to the boundary
and the bulk vertices differently. In the bulk one finds by
settingd=W4=0 andc=1 in Eqs.(3), that bounces are only
necessary whena+b,1 or ua−bu.1. For the boundary ver-
tices the loop is not allowed to exit on the boundary edges,
because the arrows on these edges are fixed by the boundary
conditions. This leads to more restricted equation sets(many
W’s are equal to zero) for the boundary vertices and gener-
ally requires the inclusion of bounce processes.

Another important point which should be mentioned is
that the DWBC do not violate the ergodicity of the algorithm
even though loops which wind around the boundaries are
excluded. These winding loops are needed in order to change
the net polarization in thex- or y-direction. However, one
can verify that the boundary conditions restricts the net po-
larization in both these directions to be zero for any configu-
ration, so winding loops are not necessary to sample the full
configuration space allowed by the boundary conditions.

IV. RESULTS

In this section we present the results of the simulations for
the polarizationxNsx,yd in the disordered, antiferroelectric,
and ferroelectric phases.

(i) Disordered phase: −1,D,1. First consider the par-
ticular caseD=0 (dotted quarter circle in Fig. 5). An exact
expression forxNsx,yd in this case was obtained by Kapi-
tonov and Pronko15 recently. To check our algorithm we have
compared results for the polarization at the pointa=b
=1/Î2 with the exact results of Ref.[15]. The comparison
can be seen in Fig. 6, where the polarization is shown as a
function of x for different values ofy and system sizes,N.
One can clearly see that the boundary values of the polariza-
tion, ±1, extends a finite distance into the bulk and this dis-
tance depends ony. The areas where the polarization stays at

its boundary values are termed “frozen” regions. Going fur-
ther into the bulk, there is a transition to a “disordered” re-
gion, where apart from small wiggles due to the finite system
size, the polarization changes smoothly. It is interesting to
note that there never is any extended regime where the po-
larization is zero, as is the case for PBC. The transition be-
tween the “frozen” and “disordered” regions gets sharper as
the system size is increased, as can be seen by comparing the
two panels in Fig. 6.

It is convenient to visualize the behavior of the polariza-
tion using grayscale plots, where gray values are assigned to
values ofxNsx,yd and each pointsx,yd corresponds to a lo-
cation of the midpoint of a horizontal edge following the
layout described in Fig. 4. Fora=b=1/Î2 such a plot is
shown in Fig. 7(a). The four “frozen” corners are clearly
apparent. In these regions, the vertices are all of the same
type, and are, from upper left to bottom right,a1, b1, b2, a2,
respectively. To measure the area of the “frozen” regions, we
define a threshold value«=0.08, such that pointssx,yd
whereuxNsx,ydu.1−« are judged to be in a “frozen” region.
Applying this we find that each “frozen” corner is 4.6% of
the total area. This value changes relatively little changing
the value of«.

Going away from theD=0 curve, let us follow along the
diagonal,a=b, towardsD=` first, see Fig. 7. As the values
of the vertex weightsa andb increase, the area of the “fro-
zen” regions decreases. We find that with«=0.08 each fro-
zen corner insbd is 4.0% of the total area, and 2.8% in(c).
For very large values ofa=b, the polarizationxNsx,yd in-

FIG. 6. PolarizationxNsx,yd as a function ofx for different
values ofy. Vertex weightsa=b=1/Î2. Results for two different
system sizes are shown:N=32 (upper panel) and N=64 (lower
panel). The filled symbols are Monte Carlo results, while the
crosses are exact results gotten from Ref.[15]. The dotted lines are
guides to the eye.
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creases linearly from −1 to 1 assx−1d /N goes from 0 to 1,
independent ofy, as can be seen in Fig. 7(d). This is consis-
tent with what is expected from an ensemble of configura-
tions with the smallest possible number ofc-type vertices:N!
configurations each with a singlec-type vertex on every row
and column.

Consider nowaÞb. Because of the symmetry of the
phase diagram, Fig. 5, one can chooseb.a without loss of
generality. The weights of the vertices in the four “frozen”
corners are no longer equal, and the “disordered” region dis-
torts into an oblong shape oriented along the diagonal with
large corners ofb2 and b1 vertices, see Fig. 8. The simula-
tions for a=1/4 andb=Î15/16 are shown in Fig. 8(a). The
width of the oblong region shrinks asb increases keepinga
fixed, a=1/4, andbecomes very thin at the boundary to the
ferroelectric region, as can be seen in Fig. 8(b). Along this
boundary,b=a+1, the width of the oblong region expands as
a increases withN being constant.

(ii ) Antiferroelectric phase:D,−1. The simulations in the
AF phase are less efficient than in the disordered phase. This
is partly due to the presence of the bounce processes also for
bulk vertices, but another feature which makes the simula-
tions difficult in this phase is the degeneracy of the two types
of AF orders. In the AF phase it becomes energetically fa-
vorable to have a maximum possible amount ofc-type ver-
tices, which is achieved by placingc-type vertices in a dia-
mond placed in the center of the lattice. For an evenN this
diamond can be placed in two equivalent places differing
only by one lattice spacing, as shown in Fig. 9. The Monte
Carlo algorithm is however slow in tunneling between these
configurations, and this sets a limit to its performance. For
odd N there is no such a degeneracy and the simulations are
more efficient. Greyscale plot of the polarization fora=b

FIG. 7. Grayscale plot of the polarizationxNsx,yd for N=64 in
the disordered phase. Vertex weights are equal,a=b, and run
through the values 1/Î2, 1, 3, 100 for(a)–(d), respectively. The
corresponding values ofD are 0, 1/2, 17/18, 1–5310−5.

FIG. 8. Grayscale plot of the polarizationxNsx,yd for N=64.
The weighta=1/4, while the weightb is chosen to beb=Î15/16
(D=0, disordered phase) in (a) and b=5/4 (D=1, the boundary
between disordered and ferroelectric phases) in (b).

FIG. 9. The two configurations having maximum number of the
c-type vertices. These vertices are marked by filled circles. The size
of the lattice is 434.
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=1/2 anda=b=3/8 areshown in Fig. 10. We have plotted
results for both even and oddN.

One can see that the “disordered” region have a diamond-
like shape, which is consistent with the domination of the
c-type vertices in the AF phase. Asa=b decreasessD→
−`d, the shape of the “disordered” region should converge to
the one shown in Fig. 9, that is, the boundaries of the “dis-
ordered” region should become more and more straight. But,
this convergence appears to be rather slow and it is not easy
to see it in Fig. 10. What one can clearly see in Fig. 10 is the
difference between odd and evenN. For oddN AF oscilla-
tions are clearly visible in the center of Figs. 10(c) and 10(d),
while they are much weaker for evenN, Figs. 10(a) and
10(b), reflecting the degeneracy mentioned above. These dif-
ference between even and oddN can also be clearly seen
from Fig. 14. For oddN AF oscillations are weaker ata=b
=1/2 than ata=b=3/8.

For aÞb grayscale plots are shown in Fig. 11. Here AF
oscillations in the middle of the plot are visible fora=1/4
andb=1/2 [Fig. 11(a)], while they have almost vanished at
the boundary between the AF and disordered phases, Fig.
11(b).

(iii ) Ferroelectric phase:D.1. The behavior of the polar-
ization in this phase is essentially the same as shown in Fig.
8. Vertices of typeb dominate completely in the region II of
the phase plane Fig. 5, while in the region I of the phase
plane the dominant vertices are those of typea. If one goes
along the phase boundary,b=a+1, towardsa=`, the widths
of the “disordered” region is increased, as we mentioned at
the end of part(i) of this section.

The exact expression is known[12] for the polarization
along the boundary,xNsx,1d. Comparing our Monte Carlo
data to this expression we find that in no cases is the absolute

difference larger than 0.016, which is comparable to the sta-
tistical errors of our simulations.

V. DISCUSSION

We have considered the phase diagram of the model for
the givenN. We now discuss the following problem: what
happens withxNsx,yd in the thermodynamic limit,N→`? It
is natural to expect that differences in the behavior of the
polarization in the different parts of the phase plane, Fig. 5,
become more pronounced asN→`. As one can see in Fig. 6,
the wiggles in the “disordered” region decrease withN in-
creasing, and this is, indeed, the case for all the pointssa,bd
lying in the disordered phase(−1,D,1, region III of the

FIG. 10. Grayscale plot of the polarizationxNsx,yd for two dif-
ferent system sizes:N=32 in (a) and (b) andN=33 in (c) and (d).
Vertex weights are equal,a=b, and take the value 1/2(D=−1, the
boundary between disordered and AF phases) for (a) and (c), and
the value 3/8(D=−23/9, AF phase) for (b) and (d).

FIG. 11. Grayscale plot of the polarizationxNsx,yd for N=32.
The weighta=1/4 while the weightb is chosen to beb=1/2 (D
=−11/4, AF phase) in (a) and b=3/4 (D=−1, the boundary be-
tween disordered and AF phases) in (b).

FIG. 12. Boundary polarizationxNsx,1d is shown for three sys-
tem sizes,N=16, 32, and 64; vertex weightsa=1/4 andb=3/4
(D=−1, the boundary between disordered and AF phases). Note the
steepening of the curve asN increases.
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phase plane, Fig. 5) and checked in our simulations. We ex-
pect that these wiggles, coming from the antiferroelectrically
ordered configurations, should vanish completely in the ther-
modynamic limit for this phase. The next conjecture we want
to make is on the behavior of the polarization along the
boundary,xNsx,1d. It is known that forD=0, as well as at
the point a=b=1, the boundary polarization becomes the
Heaviside step function in the thermodynamic limit[12,16].
We conjecture that this is the case for the whole disordered
phase; the position of the discontinuity will depend on the
ratio betweena and b. We present Fig. 12 to support this
conjecture.

Furthermore, note that fora=b=1/Î2 there is a mapping
(see, e.g., Ref.[14]) of the six-vertex model with the DWBC
onto the so-called model of domino tilings of the Aztec dia-
mond. The thermodynamic behavior of the latter model was
investigated in Refs.[17]. It shows the same features as in
Fig. 7(a): the tilings are ordered(frozen) in the corners of the
diamond, while going inside one falls into the “disordered”
region. All these features were named the “Arctic Circle
Theorem,” since the shape of the boundary between the “fro-
zen” and “disordered” regions is circular. The transition be-
tween “frozen” and “disordered” regions is step-like, with
the height of the step function depending on the coordinates
x andy.

We expect the analog of the Arctic Circle Theorem to take
place for the whole disordered phase, −1,D,1: there
should be the “frozen” regions, “disordered” region, and a
sharp transition between them. We expect also that the pro-
file of the boundary between the “frozen” and “disordered”
regions is circular fora=b, even though there is no obvious
symmetry protecting this statement. Note that the very
“smeared” profile in Fig. 7(d) does not contradict our hy-
potheses becauseN=64 is relatively small compared to the
values of the vertex weightsa andb and is thus far from the
thermodynamic limit for this point of the phase diagram.

For the ferroelectric phase,D.1, the grayscale plot Fig.
8(b) together with the scans shown in Fig. 13 leads to the
natural conjecture: in the whole region II of the phase plane,
Fig. 5, a sharp discontinuity from a “frozen” triangular re-
gion with b1 vertices to the one withb2 vertices occurs in the
thermodynamical limit. In region I the behavior is essentially
the same, one should simply usea-type vertices instead of
the b type.

To this end, consider the antiferroelectric phase,D,−1.
We expect the step-like behavior of the boundary polariza-
tion, xNsx,1d in this phase in the thermodynamic limit, as
well as the existence of the “frozen” regions in the corners.
Our statements on the behavior of the polarization deep in-
side the lattice are more speculative. Fora=b and evenN the
height of the AF oscillations decreases, while for oddN these
oscillations seem to be nonvanishing in the largeN limit, see
Fig. 14. Our belief is that there is a finite region with AF
order for oddN, asN→`, while for evenN the polarization
exhibits no such an order.

Finally, we would like to stress that the directed-loop al-
gorithm can also be applied to study the six-vertex model
with any boundary conditions, and the higher-vertex models.
These could help in solving the problems for which the ana-
lytical methods are difficult to apply. For example, the six-
vertex model with any boundary conditions can be consid-
ered as a model for a description of interface roughening of a
crystal surface[18]. An important point in studies of Ref.
[18] is the existence of exact analytical results for the six-
vertex model with PBC[1,2]. Therefore, numerical data re-
ferring to other boundary conditions than PBC could give
new insight into these studies.
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FIG. 13. PolarizationxNsx,y=N/2+1d is shown for three sys-
tem sizes,N=16, 32, and 64. Vertex weightsa=1/4 andb=5/4
(D=1, the boundary between disordered and ferroelectric phases).
Note the steepening of the curve asN increases.

FIG. 14. PolarizationxNsx,yd along lines of constanty, where
y=N/2+1, y=sN+1d /2 for even and oddN, respectively, is shown
for N=8, 16, and 32(upper panel) and N=9, 17, and 33(lower
panel). Vertex weightsa=b=3/8 (D=−29/9, AF phase).
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